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Abstract

Weakly Supervised Semantic Segmentation (WSSS) en-
ables pixel-level segmentation using image-level labels, a
less labor-intensive form of supervision than dense annota-
tions. The PSA (Pixel-Semantic Affinity) pipeline is a com-
monly used multi-stage approach for WSSS, where class ac-
tivation maps (CAMs) are refined to generate pseudo-labels
for training a fully supervised model. A key challenge within
this pipeline is accurately determining confident foreground
and background regions in CAMs, as these regions impact
the quality of pseudo-labels and ultimately segmentation
accuracy. To address this bottleneck, we introduce two
novel metrics: the Pseudolabel Quality Score (PQS), which
measures the impact of confident region thresholds on seg-
mentation accuracy, and the Threshold Evaluation Consis-
tency Metric (TECM), a novel weakly supervised criterion
for selecting optimal thresholds without ground truth an-
notations. Experiments on the PASCAL VOC 2012 dataset
demonstrate a strong correlation between these metrics
and segmentation accuracy, underscoring the importance of
confident region determination in the WSSS pipeline. Our
approach improves the performance of the WSSS pipeline
by optimizing confident region selection and providing in-
sights for future advancements.

1. Introduction

Semantic segmentation is a fundamental task in
computer vision with diverse applications, including
autonomous driving, remote sensing, and medical imaging.
While fully supervised models have achieved remark-
able success in this semantic segmentation [3, 4, 15],
their dependence on pixel-level annotations introduces
challenges. These annotations are resource-intensive
and time-consuming to obtain, particularly for large-scale
datasets or domains requiring expert knowledge. To address
these challenges, weakly supervised semantic segmentation

(WSSS) has emerged as a promising research direction,
leveraging less labor-intensive supervisory signals such as
image-level labels, bounding boxes, or scribbles. Among
these, image-level supervision stands out for its ease of
acquisition. However, WSSS pipelines face inherent limi-
tations due to the weak nature of supervision. In this study
we focus on WSSS pipelines using image-level labels,
identifying a key bottleneck in the pipeline and proposing a
novel evaluation criterion to address this limitation.

A typical multi-stage WSSS pipeline consists of two
main stages: Stage 1 and Stage 2. In Stage 1, a classifier is
trained using image-level labels, and class activation maps
(CAMs) [24] are extracted from it. These CAMs provide
an initial localization of object regions within an image
but are often noisy or incomplete due to the weak nature
of supervision. To address this, a refinement network is
introduced to refine the CAMs and improve segmentation
accuracy. The refined CAMs are then transformed into
pseudo-labels by assigning each pixel to the class with the
highest activation score. In Stage 2, these pseudo-labels
serve as supervision for training a fully supervised seman-
tic segmentation model, further improving segmentation
accuracy. Importantly, the quality of the pseudo-labels
and therefore the performance of the entire pipeline is
heavily dependent on the refinement process conducted by
the refinement network. This network is typically trained
using only the confident regions of the CAMs. Therefore,
accurately identifying these confident regions is a critical
step that directly impacts the overall performance of the
WSSS pipeline.

We experimentally demonstrate that the selection of con-
fident regions in CAMs significantly impacts the perfor-
mance of the fully supervised model trained in Stage 2 of
the WSSS pipeline. To systematically define these confident
regions, we employ two thresholds: a confident background
threshold and a confident foreground threshold. A pixel is
classified as confident background if its highest CAM score



is less than or equal to the background threshold, and as
confident foreground if its score meets or exceeds the fore-
ground threshold. Pixels with scores falling between these
thresholds are classified as neutral pixels, representing non-
confident regions excluded from refinement network train-
ing. Building on these insights, we propose a novel evalua-
tion criterion for determining optimal confident background
and foreground thresholds. This criterion improves the re-
finement of pseudo-labels, thereby improving the overall
performance of the WSSS pipeline. Importantly, our ap-
proach operates in a weakly supervised setting and does not
require additional annotations.

Our main contributions are as follows:

• Identifying the determination of confident regions in
CAMs as a critical bottleneck in the WSSS pipeline.

• Proposing a novel evaluation criterion to select the
optimal confident background and foreground thresh-
olds, allowing effective confident region determination
without additional annotations.

2. Related Work
2.1. Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation (WSSS)
methods aim to achieve pixel-level segmentation using lim-
ited supervision, addressing the high cost and effort asso-
ciated with dense pixel-level annotations. Various forms
of weak supervision have been explored, including image-
level labels [11, 16, 17], bounding boxes [5, 10], and scrib-
bles [14, 19]. Among these, methods utilizing image-level
labels have gained widespread attention, as they offer a
more accessible and cost-effective alternative compared to
the more precise but labor-intensive annotations required
for bounding boxes or scribbles.

2.1.1 Single-Stage Methods

Single-stage methods [2, 21, 23] address weakly super-
vised semantic segmentation in a single, end-to-end pro-
cess, combining classification and segmentation within a
unified framework. By eliminating the need for multiple
training stages, these methods offer a streamlined structure.
However, the joint optimization of classification and seg-
mentation inherently limits the flexibility to further refine
segmentation quality. Consequently, despite their simplicity
and efficiency, single-stage methods typically achieve lower
performance compared to their multi-stage counterparts.

2.1.2 Multi Stage Methods

Multi-stage methods, in contrast to single-stage approaches,
typically achieve superior segmentation performance by

progressively refining initial segmentation masks. These
methods for weakly supervised semantic segmentation of-
ten begin with the generation of class activation maps
(CAMs) to create initial segmentation masks, which are
then used to train a fully supervised segmentation model.
However, initial masks derived from CAMs suffer from two
primary limitations: they often fail to cover the complete
object area and may incorrectly activate non-relevant re-
gions. To address these limitations and improve CAM qual-
ity, several methods have been proposed. For instance, Su
et al. [18] introduce a novel data augmentation strategy to
reduce object-context dependency, Wang et al. [20] lever-
age a pixel correlation module to refine predictions using
neighboring pixel information, Kweon et al. [12] adopt an
adversarial approach by coupling a classifier with a recon-
struction model, and Ahn et al. [1] propose AffinityNet to
capture semantic affinity between adjacent pixels.

Among multi-stage methods, the PSA (Pixel-Semantic
Affinity) pipeline, introduced by AffinityNet, is a widely
recognized framework in WSSS. The PSA pipeline typi-
cally consists of two stages: first, a classifier is trained
to generate CAMs, highlighting potential object regions
within an image; second, these CAMs are refined using a
random walk guided by affinities predicted by Affinity Net,
which learns pixel-level semantic affinities from the confi-
dent regions of the CAMs. Numerous methods [9, 18] have
adopted the PSA pipeline as a base framework, often incor-
porating modifications to improve the quality of the initial
CAMs. In this study, we evaluate the impact of confident
region determination within the PSA pipeline, focusing on
its implementation with the widely used AffinityNet model.
While our analysis centers on AffinityNet, the proposed ap-
proach is generalizable to other methods that rely on confi-
dent CAM regions for supervision. The PSA pipeline struc-
ture is illustrated in Figure 1, showing the stages from initial
image classification to final segmentation prediction.

2.2. Confident Region Determination in Affinity Net

Defining confident foreground and background regions
in CAMs is critical for effectively training Affinity Net
within the PSA pipeline. In their formulation, the authors
of Affinity Net introduced a parameter, α, to define the

background CAM as Mbg(x, y) =

{
1−max

c∈C
Mc(x, y)

}α

,

where C represents the set of object classes. To determine
confident regions, they proposed using lower α values
for confident foreground regions and higher α values for
confident background areas. While they demonstrated that
α is not highly sensitive to overall model performance, they
did not evaluate its robustness in accurately identifying
confident foreground and background regions, which are
essential for training the Affinity Net.



Figure 1. PSA Pipeline

Some studies have modified threshold selection within
the PSA pipeline. For example, PuzzleCAM [9] follows
the PSA framework but does not provide a specific formu-
lation for generating the background CAM. Instead, they
adopt a constant thresholding approach for all pixels, clas-
sifying pixels with scores below a background threshold as
confident background, those above a foreground threshold
as confident foreground, and those in between as neutral.
These thresholds are used to define confident regions from
which affinity labels are extracted to train the Affinity Net,
guiding it in learning pixel affinities. To evaluate the chosen
foreground and background thresholds, they calculate the
mIoU scores of these masks against ground truth segmen-
tation masks. However, this reliance on ground truth masks
for threshold selection introduces challenges in a weakly su-
pervised setting. In contrast, we propose a novel evaluation
criterion for selecting the optimal confident background and
foreground thresholds, maintaining a fully weakly super-
vised framework by avoiding reliance on ground truth seg-
mentation masks.

3. Methodology
3.1. Motivation

As highlighted in our related work, multi-stage ap-
proaches like the PSA pipeline demonstrate strong poten-
tial in WSSS. This study focuses on the PSA pipeline with
Affinity Net, which refines initial class activation maps
(CAMs) to produce high-quality pseudo-labels for training
fully supervised segmentation models. Since Affinity Net
relies on confident foreground and background regions in
the CAMs for learning, the determination of these regions
is critical. The quality of these confident regions directly
influences the refinement process, affecting pseudo-label
quality and, ultimately, the performance of the fully super-
vised segmentation model. To address this dependency, we
experimentally demonstrate the impact of confident region
selection on the WSSS pipeline and propose a method for
optimizing confident region determination in CAMs.

3.2. Impact of Confident Region Determination on
WSSS Performance

Optimizing the PSA pipeline requires selecting appro-
priate confident foreground and background thresholds in
CAMs. To evaluate the effectiveness of different thresh-
olds in improving segmentation quality, we introduce the
Pseudolabel Quality Score (PQS). This metric assesses the
quality of pseudo-labels generated from CAMs, serving as a
proxy for predicting the segmentation accuracy achievable
in Stage 2. The PQS is calculated as:

PQS = mIoU × (1− Neutral Pixel Ratio) (1)

where:

• mIoU: The mean Intersection-over-Union (mIoU)
measures segmentation quality by comparing pseudo-
labels with ground truth segmentation masks, exclud-
ing neutral pixels. Neutral pixels, whose scores fall be-
tween the background and foreground thresholds, rep-
resent uncertain regions and are excluded from mIoU
computation, as they do not contribute to Affinity Net
training. This ensures that only confidently labeled
pixels are used to assess segmentation quality. The
mIoU is defined as:

mIoU =
1

C

C∑
i=1

|Pi ∩Gi|
|Pi ∪Gi|

(2)

where:

– C is the total number of classes.
– Pi represents the set of pixels classified as class i

in the pseudo-labels.
– Gi represents the set of pixels classified as class

i in the ground truth.

• Neutral Pixel Ratio: The Neutral Pixel Ratio is the
proportion of neutral pixels relative to the total num-
ber of pixels in the pseudo-labels. Neutral pixels are



excluded from Affinity Net training to reduce noise but
excessive neutral pixels reduce effective training data,
potentially limiting the model’s ability to learn seman-
tic affinities. Balancing a high mIoU score while mini-
mizing the neutral pixel ratio is critical for robust train-
ing. The Neutral Pixel Ratio is calculated as:

Neutral Pixel Ratio =
Number of Neutral Pixels
Total Number of Pixels

(3)

In this study, we use PQS as an experimental metric to
demonstrate how confident region determination—defined
by background and foreground thresholds—affects the per-
formance of the entire WSSS pipeline. PQS provides in-
sights into pipeline dependencies, highlighting the impact
of confident region selection on downstream segmentation
quality. However, it is not intended for direct threshold opti-
mization, as ground truth masks are typically unavailable in
weakly supervised settings. To validate PQS as an indica-
tor of segmentation quality, we analyze its correlation with
the mIoU scores of a fully supervised segmentation model
trained in Stage 2. Detailed results and analysis of this cor-
relation are presented in the Experiments section.

3.3. Proposed Evaluation Criterion for Confident
Region Thresholds

The Pseudolabel Quality Score (PQS) relies on access
to ground truth segmentation masks for mIoU calculation,
making it impractical for weakly supervised settings
where such annotations are unavailable. To overcome this
limitation, we propose a novel evaluation criterion tailored
for the weakly supervised context. This criterion enables
the assessment of confident background and foreground
thresholds without requiring ground truth segmentation
masks, providing a practical alternative for evaluating
threshold effectiveness.

Our Threshold Evaluation Consistency Metric (TECM)
leverages the refinement behavior observed in CAMs be-
fore and after processing by AffinityNet. By analyzing the
changes in the neutral pixel ratio and tracking pixel transi-
tions from neutral to foreground or background during re-
finement, TECM provides a meaningful indicator of confi-
dent region selection quality. This metric aims to optimize
the training of AffinityNet, thereby improving the overall
performance of the segmentation pipeline.

TECM = max
(
0,min

(
2, 1 + NPRinitial−NPRrefined

NPRinitial+ϵ

))
×

(
1− |N-to-B−N-to-F|

N-to-B+N-to-F

)
(4)

where:

• NPRinitial represents the Neutral Pixel Ratio in the ini-
tial CAMs, defined as the proportion of pixels classi-
fied as neutral based on the chosen background and
foreground thresholds.

BG Threshold FG Threshold Neutral Pixel Ratio mIoU PQS

0.05

0.05 0.00 39.92 42.71
0.15 24.42 44.58 42.85
0.3 48.01 17.33 33.92
0.45 73.18 18.72 18.82

0.1

0.1 0.00 50.40 51.62
0.2 12.18 25.78 52.51
0.35 26.18 20.96 48.23
0.5 41.21 44.19 40.21

0.15

0.15 0.00 23.51 55.60
0.25 8.51 53.88 55.46
0.4 19.14 47.43 51.82
0.55 30.75 53.97 44.96

0.2

0.2 0.00 53.57 56.92
0.3 6.80 56.06 55.94
0.45 15.74 52.33 51.79
0.6 25.59 53.88 44.78

0.25

0.25 0.00 51.41 56.69
0.35 5.66 54.51 55.07
0.5 13.51 54.46 50.07
0.65 22.27 45.41 42.48

0.3

0.3 0.00 53.64 55.40
0.4 5.00 50.43 53.00
0.55 11.82 53.28 47.23
0.7 19.88 48.08 38.63

0.35

0.35 0.00 28.45 53.01
0.45 4.46 50.96 50.06
0.6 10.64 51.66 43.59
0.75 18.25 33.17 34.38

0.4

0.4 0.00 51.33 49.74
0.5 3.97 53.03 46.41
0.65 9.74 48.41 39.16
0.8 17.33 29.56 27.99

Table 1. Comparison of mIoU and PQS scores across different
background (BG) and foreground (FG) threshold configurations.
The Neutral Pixel Ratio represents the proportion of neutral pix-
els in the pseudo-labels relative to the total pixels. The mIoU val-
ues are calculated on the PASCAL VOC 2012 val set from the fully
supervised segmentation models trained with pseudo-labels gener-
ated using the respective threshold combinations. The PQS (Pseu-
dolabel Quality Score) evaluates pseudo-label quality as defined
in Equation 1.

• NPRrefined represents the Neutral Pixel Ratio in the re-
fined CAMs generated after processing with Affinity
Net.

• N-to-B denotes the number of pixels initially classi-
fied as neutral in the initial CAMs but reclassified as
background in the refined CAMs.

• N-to-F denotes the number of pixels initially classified
as neutral in the initial CAMs but reclassified as fore-
ground in the refined CAMs.

• ϵ is a small constant added to avoid division by zero
when NPRinitial is close to zero.

This metric incorporates two main factors:

1. Neutral Pixel Ratio Reduction: The first component,

max

(
0,min

(
2, 1 +

NPRinitial − NPRrefined

NPRinitial + ϵ

))
measures the relative reduction in the neutral pixel ra-
tio from the initial to refined CAMs. This term ranges



from 0 to 2, penalizing cases where the neutral pixel
ratio increases or remains largely unchanged after re-
finement, while rewarding cases where it decreases, in-
dicating improved confident region determination.

2. Balanced Transition from Neutral to Fore-
ground/Background: The second component,

1− |N-to-B − N-to-F|
N-to-B + N-to-F

assesses the balance in transitions from neutral pixels
to foreground and background. Balanced transitions
indicate that the refined CAMs are consistently reas-
signing neutral regions, avoiding bias toward either
background or foreground. A perfect balance (N-to-
B = N-to-F) yields a value of 1, while extreme bias
results in lower scores.

TECM combines these two components to provide a ro-
bust measure of confident region quality in CAMs. This
two-component approach allows the TECM to capture both
the extent of neutral pixel reduction and the balance in
pixel reassignment. Unlike metrics requiring ground truth
masks, TECM evaluates confident region determination di-
rectly from the refinement dynamics of CAMs, making it
suitable for weakly supervised pipelines.

Figure 2. PQS-mIoU Relationship: Inliers and Outliers.

3.3.1 Limitations of the Proposed Metric

While the metric provides a robust way to evaluate confi-
dent region thresholds in the weakly supervised setting, it
has limitations. Specifically, when there are no neutral pix-
els (i.e., if the foreground and background thresholds are
identical), the metric yields a score of 1. This result does
not offer meaningful insight into the quality of the thresh-
old pair, as the metric is fundamentally based on the change
in neutral pixels and their reassignment. However, in our
experiments, we observed that having a proportion of neu-
tral pixels often leads to better performance, as it allows the

Figure 3. PQS-mIoU Difference: Inliers and Outliers.

Affinity Net to focus on high-confidence areas, which im-
proves overall segmentation quality. Therefore, the metric
remains valuable and applicable for most threshold config-
urations.

4. Experiments
4.1. Experimental Setup

In this study, we evaluate our approach using the
PASCAL VOC 2012 [6] dataset, which contains 1,464
training images, 1,449 validation images, and 1,456 test
images, covering 20 object categories and a background
class. We include additional annotations from the Semantic
Boundary Dataset [8], resulting in an augmented set of
10,582 images, as used in prior work [1, 13, 20].

We use the PuzzleCAM model for classifier training
and CAM extraction, following the experimental setup
described in their work. PuzzleCAM employs the PSA
pipeline introduced by AffinityNet. Using ResNeSt-101
[22] as the backbone, we train the PuzzleCAM model to
generate CAMs and refine them using AffinityNet to create
pseudo-labels. PuzzleCAM applies a single-thresholding
mechanism to classify pixels in pseudo-labels as either
background or foreground, effectively disallowing any neu-
tral pixels. While this approach simplifies the thresholding
process, it risks introducing noisy labels into pseudo-labels,
especially in regions where CAM scores are uncertain.

In contrast, we employ the same threshold combination
used for confident region determination in CAMs to iden-
tify confident pixels in pseudo-labels. This ensures con-
sistency across the pipeline and allows uncertain regions
to remain neutral, reducing the likelihood of incorporating
noisy labels. Non-confident regions in pseudo-labels are
excluded from training the fully supervised segmentation
model, ensuring that only confident regions guide the learn-
ing process. Notably, our experiments show that allowing
neutral pixels in pseudo-labels generally results in higher



BG Threshold FG Threshold PQS Initial PQS Pseudo PQS Average NPR Initial (%) NPR Pseudo (%) |N-to-B−N-to-F|
N-to-B+N-to-F TECM (x100)

0.05
0.15 45.06 42.85 43.955 23.44 24.42 0.57 40.81
0.3 34.85 33.92 34.385 45.86 48.01 0.66 32.69

0.45 21.65 18.82 20.235 66.19 73.18 0.70 27.36

0.1
0.2 50.25 52.51 51.38 13.46 12.18 0.55 49.83

0.35 42.29 48.23 45.26 28.75 26.18 0.60 44.07
0.5 31.55 40.21 35.88 43.47 41.21 0.62 39.71

0.15
0.25 50.40 55.46 52.93 9.93 8.51 0.56 51.32
0.4 42.55 51.82 47.185 22.29 19.14 0.58 48.44

0.55 31.38 44.96 38.17 35.02 30.75 0.60 45.06

0.2
0.3 48.76 55.94 52.35 8.06 6.80 0.56 51.92

0.45 40.39 51.79 46.09 18.85 15.74 0.57 51.37
0.6 28.13 44.78 36.455 30.43 25.59 0.59 48.59

0.25
0.35 46.22 55.07 50.645 6.89 5.66 0.53 56.68
0.5 36.64 50.07 43.355 16.85 13.51 0.55 55.57

0.65 22.92 42.48 32.7 27.24 22.27 0.56 53.33

0.3
0.4 42.93 53.00 47.965 6.12 5.00 0.52 59.09

0.55 31.83 47.23 39.53 15.59 11.82 0.55 58.92
0.7 16.55 38.63 27.59 24.55 19.88 0.53 58.42

0.35
0.45 38.73 50.06 44.395 5.70 4.46 0.52 61.76
0.6 26.02 43.59 34.805 14.76 10.64 0.55 61.94

0.75 10.08 34.38 22.23 21.94 18.25 0.49 60.94

0.4
0.5 33.61 46.41 40.01 5.51 3.97 0.53 65.60

0.65 19.45 39.16 29.305 13.91 9.74 0.54 65.27
0.8 5.63 27.99 16.81 19.04 17.33 0.38 68.25

Table 2. Detailed analysis of PQS and TECM scores across different background (BG) and foreground (FG) threshold configurations.
The BG Threshold and FG Threshold columns represent the thresholds used to define confident background and foreground regions,
respectively. PQS Initial refers to the Pseudolabel Quality Score of the initial segmentation masks derived from CAMs, while PQS
Pseudo refers to the PQS scores of the pseudo-labels. PQS Average is the average of PQS Initial and PQS Pseudo. NPR Initial and NPR
Pseudo represent the neutral pixel ratio (%) in the initial segmentation masks and pseudo-labels, respectively. N-to-B denotes the number
of pixels reclassified as background in pseudo-labels while neutral in initial masks, and N-to-F denotes the number of pixels reclassified as
foreground in pseudo-labels while neutral in initial masks. TECM refers to the Threshold Evaluation Consistency Metric score (scaled by
100), as defined in Equation 4.

mIoU scores compared to excluding them entirely (see Ta-
ble 1), further validating our approach. The refined pseudo-
labels obtained through this method are then used to train
DeepLabv3+ [4] as a fully supervised semantic segmenta-
tion model.

4.2. Validation of PQS and TECM Metrics

To evaluate the impact of confident region determination
on the WSSS pipeline’s performance, we conduct a two-
part validation using the Pseudolabel Quality Score (PQS)
and the Threshold Evaluation Consistency Metric (TECM).
PQS quantitatively assesses the segmentation quality of
pseudo-labels by combining segmentation accuracy (mIoU)
with data utilization (neutral pixel ratio). TECM, on the
other hand, provides a fully weakly supervised criterion to
evaluate threshold selection by analyzing refinement behav-
ior in CAMs. Together, these metrics offer complementary
perspectives: PQS serves as a direct approximation for seg-
mentation accuracy, while TECM assesses the consistency
and effectiveness of the thresholding process in the absence
of ground truth annotations.

Figure 4. TECM-PQS Relationship.

4.2.1 Validation of PQS

In our first validation, we analyze the relationship between
the Pseudolabel Quality Score (PQS) of the pseudo-labels
and the mIoU scores of the fully supervised segmentation
model on the PASCAL VOC 2012 val set. By applying
RANSAC [7] to exclude outliers, we observe a Pearson
correlation coefficient of 0.97 with a p-value of 3.81e-12,
demonstrating a strong relationship between the PQS of



Input Image Ground-truth CAM Initial Seg. Mask Pseudolabel Seg. Prediction

(a) TECM = 1.39, mIoU = 0.98

(b) TECM = 0.28, mIoU = 0.32

(c) TECM = 0.36, mIoU = 0.56

(d) TECM = 0.60, mIoU = 0.68

(e) TECM = 0.29, mIoU = 0.47

Figure 5. Qualitative examples from PASCAL VOC 2012 val set with corresponding mIoU and TECM scores.

pseudo-labels and the mIoU performance of the fully su-
pervised model across various foreground and background
threshold combinations. Table 1 provides a detailed com-
parison of PQS and mIoU scores for the fully supervised
model, while Figure 2 visually illustrates their correlation.
These results underscore the critical role of pseudo-label
quality, as measured by PQS, in determining the perfor-
mance of the fully supervised segmentation model.

To further demonstrate the impact of confident region
determination on pseudo-label quality and the effective-

ness of the WSSS pipeline, we compare the differences in
PQS scores between pseudo-labels and initial segmentation
masks derived from CAMs with the differences in mIoU
scores of the fully supervised models trained on these re-
spective labels. After applying RANSAC to eliminate out-
liers, we observe a Pearson correlation coefficient of 0.92
with a p-value of 3.23e-9, indicating a strong relationship
between the PQS differences of pseudo-labels and initial
masks and the corresponding mIoU score differences of the
fully supervised models. Additional qualitative and quanti-



tative results that provide a detailed comparison and visual-
ize this correlation can be found in the Appendix. These
findings highlight that confident region determination in
CAMs has a progressive effect on the segmentation perfor-
mance of the final model, underscoring the critical role of
selecting optimal confident regions in initial CAMs to im-
prove the overall performance of the WSSS pipeline.

4.2.2 Validation of TECM

Building on our validation with PQS, we assess the effec-
tiveness of TECM in evaluating threshold pairs. The TECM
metric provides a weakly supervised approach for threshold
selection, eliminating the reliance on ground truth labels by
focusing on neutral pixel changes and the balance of pixel
reassignment.

To validate TECM, we calculate its correlation with the
averaged PQS scores of initial masks and pseudo-labels,
which serve as an approximation for segmentation accu-
racy. The correlation analysis excludes cases where no
neutral pixels exist, i.e., when the foreground threshold
equals the background threshold, as such configurations do
not provide meaningful neutral region dynamics for TECM
evaluation. A high correlation between TECM and PQS
demonstrates that TECM is a reliable metric for identifying
threshold values that enhance segmentation quality, even
without access to ground truth annotations. After applying
RANSAC to eliminate outliers, we observe a Pearson corre-
lation coefficient of 0.84 with a p-value of 0.0024 across dif-
ferent background and foreground threshold combinations.
Table 2 presents these results, while Figure 4 provides a
visual representation of the correlation, excluding the iden-
tified outliers for clarity. Additionally, Figure 5 offers qual-
itative examples indicating the relationship between TECM
and mIoU, further validating the metric’s effectiveness.

In conclusion, PQS validates that confident region deter-
mination impacts the WSSS pipeline’s segmentation accu-
racy, while TECM offers a weakly supervised criterion for
optimal threshold selection without requiring ground truth.
Together, PQS and TECM enable robust and effective con-
fident region determination, improving the pipeline’s per-
formance.

5. Conclusion
In this study, we addressed the challenge of confident

region determination in CAMs to improve the PSA pipeline
for Weakly Supervised Semantic Segmentation (WSSS).
We introduced two key metrics: the Pseudolabel Quality
Score (PQS), which demonstrates the impact of confident
region thresholds on final segmentation accuracy, and
the Threshold Evaluation Consistency Metric (TECM),
which provides a reliable and fully weakly supervised
criterion for threshold selection, eliminating the need

for ground truth annotations. Our results show that op-
timizing confident region thresholds, guided by TECM,
leads to improved pseudo-label quality and improved
segmentation performance. We hope this work will
provide insights for future research following the PSA
pipeline in determining optimal confident regions in CAMs.
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BG Threshold FG Threshold PQS Pseudo PQS Initial mIoU Pseudo mIoU Initial PQS Diff mIoU Diff

0.05

0.05 42.71 46.19 39.92 43.79 -3.48 -3.87
0.15 42.85 45.06 44.58 51.31 -2.21 -6.73
0.3 33.92 34.85 17.33 22.13 -0.93 -4.80

0.45 18.82 21.65 18.72 51.21 -2.83 -32.49

0.1

0.1 51.62 51.82 50.40 26.66 -0.20 23.74
0.2 52.51 50.25 25.78 22.97 2.26 2.81

0.35 48.23 42.29 20.96 19.04 5.94 1.92
0.5 40.21 31.55 44.19 17.17 8.66 27.02

0.15

0.15 55.60 53.26 23.51 37.15 2.34 -13.64
0.25 55.46 50.40 53.88 51.42 5.06 2.46
0.4 51.82 42.55 47.43 27.82 9.27 19.61

0.55 44.96 31.38 53.97 49.27 13.58 4.70

0.2

0.2 56.92 52.72 53.57 51.96 4.20 1.61
0.3 55.94 48.76 56.06 52.34 7.18 3.72

0.45 51.79 40.39 52.33 49.73 11.40 2.60
0.6 44.78 28.13 53.88 47.47 16.65 6.41

0.25

0.25 56.69 50.80 51.41 45.76 5.89 5.65
0.35 55.07 46.22 54.51 42.51 8.85 12.00
0.5 50.07 36.64 54.46 35.40 13.43 19.06

0.65 42.48 22.92 45.41 38.09 19.56 7.32

0.3

0.3 55.40 47.96 53.64 51.38 7.44 2.26
0.4 53.00 42.93 50.43 46.28 10.07 4.15

0.55 47.23 31.83 53.28 45.41 15.40 7.87
0.7 38.63 16.55 48.08 28.50 22.08 19.58

0.35

0.35 53.01 44.62 28.45 48.45 8.39 -20.00
0.45 50.06 38.73 50.96 43.55 11.33 7.41
0.6 43.59 26.02 51.66 39.78 17.57 11.88

0.75 34.38 10.08 33.17 19.64 24.30 13.53

0.4

0.4 49.74 40.69 51.33 41.75 9.05 9.58
0.5 46.41 33.61 53.03 43.03 12.80 10.00

0.65 39.16 19.45 48.41 21.09 19.71 27.32
0.8 27.99 5.63 29.56 11.46 22.36 18.10

Table 3. Detailed comparison of PQS and mIoU scores across different threshold configurations for confident background (BG) and
foreground (FG). The BG Threshold and FG Threshold columns represent the thresholds used to define confident background and
foreground regions, respectively. PQS Pseudo and PQS Initial are the Pseudolabel Quality Scores for pseudo-labels and initial masks
derived from CAMs, respectively. mIoU Pseudo and mIoU Initial are the mIoU scores calculated on the PASCAL VOC 2012 val set for
fully supervised models trained on pseudo-labels and initial masks, respectively. PQS Diff and mIoU Diff represent the differences (PQS
Pseudo - PQS Initial) and (mIoU Pseudo - mIoU Initial).



Input Image Ground Truth Initial Mask Pseudolabel Pred. (Initial Mask) Pred. (Pseudolabel)

(a) PQSpseudolabel=0.85, PQSinitial mask=0.29, Difference=0.56.
mIoUtrained on pseudolabel=0.91, mIoUtrained on initial mask=0.46, Difference=0.45.

(b) PQSpseudolabel=0.92, PQSinitial mask=0.53, Difference=0.39.
mIoUtrained on pseudolabel=0.95, mIoUtrained on initial mask=0.55, Difference=0.40.

(c) PQSpseudolabel=0.67, PQSinitial mask=0.33, Difference=0.34.
mIoUtrained on pseudolabel=0.74, mIoUtrained on initial mask=0.58, Difference=0.16.

(d) PQSpseudolabel=0.79, PQSinitial mask=0.29, Difference=0.50.
mIoUtrained on pseudolabel=0.95, mIoUtrained on initial mask=0.69, Difference=0.26.

(e) PQSpseudolabel=0.19, PQSinitial mask=0.57, Difference=-0.38.
mIoUtrained on pseudolabel=0.12, mIoUtrained on initial mask=0.37, Difference=-0.25.

Figure 6. Qualitative examples from the PASCAL VOC 2012 val set illustrating PQS and mIoU scores for initial segmentation masks
and pseudo-labels. The figure demonstrates improvements in segmentation quality with pseudo-labels, highlighting the differences in
PQS and mIoU scores. Specifically, the PQS Difference is calculated as PQSpseudolabel − PQSinitial mask, and the mIoU Difference is
computed as mIoUtrained on pseudolabel −mIoUtrained on initial mask. Pred. (Initial Mask) represents the prediction made by the fully supervised
model trained on initial segmentation masks, while Pred. (Pseudolabel) represents the prediction made by the fully supervised model
trained on pseudo-labels. Positive differences indicate improved segmentation accuracy, while negative differences highlight performance
degradation.
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